
The automation engineers 
guide to SRE

Automation solutions combining SRE idealismus



The Quest

To better understand the concepts, principles 
and the relationship between DevOps, SRE and 

different testing approaches

And how as automation engineers we can 
leverage these to our advantage



DevOps & SRE
● The 10,000ft view

Performance
● Shift left and moving right

Chaos
● Cultural change to when things fail

Automated checks
● Using real world examples

Security
● Surfacing potential vulnerabilities

Observability/Metrics
● Understanding behaviour

Agenda

Testing 
approaches 



DevOps ==
Development + Operations

DevOps is a set of practices that combines software 
development and IT operations



It’s about:
● Continuous communication & collaboration
● Shared responsibility
● A commitment to automation
● Better work management
● Reduced lead time
● Deploying more frequently

DevOps in a nutshell
DevOps is about meeting software users ever-increasing demand for 

frequent, innovative new features combined with uninterrupted 
performance and availability



DevOps



SRE
(site reliability engineering)



● Embracing risk
● Blameless culture
● Remove TOIL
● Apply automation where possible
● Define the problem space (SLO/SLI/SLA’s)

SRE is about
SRE is the practice of applying software engineering principles to 

operations and infrastructure processes to help organizations create 
highly reliable and scalable software systems



Vocab

SLA
Service Level Agreement

SLO
Service Level Objective

Agreement between provider and 
client about measurable metrics like 

uptime, responsiveness

Agreement about a specific metric like 
uptime or response time

External Promise

Internal Promise

Error budget
- How much headroom is allowed

TOIL
- Operational work that can be automated



Measurement/Awareness

SLI
Service Level Indicator

The SLI will need to meet the promises 
set out in the SLO

Compliance

Data processing SLIs

● Throughput
● Data freshness
● Data correctness
● Coverage

User interfacing SLIs

● Availability
● Latency 
● Quality



Consider things like 
● Morale
● employee experience,
● human wellness 
● organization structure
● tool stack
● hardware and software

Responsibility

SRE teams are responsible for the availability, latency, performance, efficiency, 
change management, monitoring, emergency response, and capacity planning of 
their services. 



SRE + DevOps

Principles  combined with idealisms that are 
backed up with measurement



Combining forces
Both SRE and DevOps work to bridge the gap 

between development and operations teams to 
deliver services faster. 



DevOps
● Continuous and rapid 

development
● Promotes Open 

communication
● Ability to make mistake
● Shared Ops 

responsibilities



SRE

● Embracing risk
● Eliminating toil
● Balancing velocity and 

reliability
● Reducing operational 

tasks
● Managing operational risk
● DevOps bridge



Cloud Native
● It’s about services not 

servers
● SaaS, PaaS, IaaS
● Savings, Scalability & 

Availability
● Containerisation, 

Automation and 
orchestration



DevOps Pillars
DevOps

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



DevOps / SRE relationship
DevOps SRE

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



DevOps / SRE relationship
DevOps SRE

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



DevOps / SRE relationship
DevOps SRE

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



DevOps / SRE relationship
DevOps SRE

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



DevOps / SRE relationship
DevOps SRE

Implement gradual change Encourage moving quickly by reducing costs of failure

Accept failure as normal Have a formula for balancing accidents and failures against new 
releases

Reduce organization silos Shared ownership with developers by using the same tools and 
techniques across the stack

Leverage tooling & automation Encourages “Automating all the things”, minimises manual 
systems work to focus on efforts that bring long-term system value

Measure everything Believes that operations is a software problem, and defines 
prescriptive ways for measuring availability, uptime, outages, toil



Relationships
SRE and Testing

● Performance
● Chaos
● Security
● Functional automation



Performance Engineering 
Planning and building the application 

with performance in mind



Traditional E2E Performance Testing

Design / 
Planning Development Test Deploy Operate Support

- Very waterfall orientated
- Testing late in the cycle leads to a larger feedback loop and in 

turn increasing cost, resources, energy and delivery time

E2E Performance

- Workload 
Modeling

- Performance 
Modeling

- Performance 
Execution/Observation

Metrics



Performance Engineering
Shift Left 

Developmen
t Deploy Operate Support

Performance as  a component 
of feature development

● Moving part of the performance 
testing process into the 
development phase

Test

Performance Observability Metrics

Design/Plan Deploy



Performance Engineering
Move Right 

Design / Plan Development Test

Performance 
Observability Metrics

● Using production data to verify 
performance assumptions

● Using reported and collected 
user data in conjunction with 
operational metrics to drive 
development priorities

User Data

Deploy Operate Support



People and process
● Understanding performance early
● Including user data
● Enhanced Traceability
● Reduced fix time 
● Increased Transparency
● Opening communication channels
● Accountability (SLO’s)

Measure
● Are we performing as expected (SLI’s)

Performance + SRE 

Implement gradual change Reduce organization silos



Chaos Engineering(CE)
Chaos Engineering is the discipline of experimenting on a 

system in order to build confidence in the system’s 
capability to withstand turbulent conditions in production



Chaos is about building a culture of resilience in 
the presence of unexpected system outcomes

It’s all about understanding the end user 
experience and understanding how we are 

building tolerant systems

Chaos Engineering is NOT…
About breaking the system



Chaos is about experimentation

➔ Start By Defining the Baseline (Steady-State)

➔ Hypothesize the Steady-State Will Endure 

➔ Introduce Variables/Experiments 

➔ Try to Disprove the Hypothesis

The Approach

The Pillars

➔ Adequate coverage

➔ Run often and in Prod (or similar)

➔ Minimising the blast radius 



People and Process
● Behaviour under varying conditions
● Cultural shift to what happens when things 

fail
● Improves how infrastructure is built and 

how services are consumed
● Builds internal trust and empathy

Measure
- Throughput when services disabled

Chaos + SRE 

Accept failure as normal Reduce organization silos



Functional Automation
Testing Resilience and reliability



The comparison

We take inputs and produce outputs 
we then compare them to what’s 
expected in the way of assertions

Performance spans all boundaries as 
each approach can and should have 
a performance consideration



People & Process
● Confirming expectations
● Understanding/representing logical flow
● Enhanced communication and socialisation
● Fast feedback cycles
● Reduced double handling
● Unbiased opinions

Measure
- Failing tests, Disabled tests
- Test presence ratio (Unit/Int/API/UI)

SRE + F Automation

Leverage tooling & automation Reduce organization silos



Security
Are we safe



Vulnerability testing
SAST

● Inside out approach
● Can be run early on (feature 

branches)
● Can be run against all code 

bases (app, services, apis)
● Easily automatable

DAST
● Outside in approach
● Used later on in the SDLC
● Only used for web app and 

services
● Uses fault injection 

techniques

IAST
● Scalable
● Reduced false positives



People & Process
● Improved reliability / predictability
● Open discussions about sec
● Unbiased feedback
● Lowered costs

Measure
- Passwords found in code

SRE + Security

Leverage tooling & automation Reduce organization silos



Observability/Measurement
Understanding system/applications 

state and behaviour



Understanding test state
We use tests to influence and verify load, look for 

vulnerabilities, induce erratic behaviour and 
confirm the expected

We need a way to make sure that the results that 
are generated are processed, understood and 

acted upon



Collecting the data

SRE

PerformanceChaosFunctional 
Automation

The understood The Experimental The behaviour

Monitoring & Observability 
metrics

Does it meet our 
TLO/SLO’s ?

Yes

No

Progress

Security

The exposed

Fix issues

Use of TLI’s



Collating the data

SRE

PerformanceChaosFunctional 
Automation

Monitoring & Observability 
metrics

Does it meet our 
TLO/SLO’s ?

Yes

No

Progress

Security

Fix issues

Use of TLI’s



Processing the data

SRE

Monitoring & Observability 
metrics

Does it meet our 
TLO/SLO’s ?

Yes

No

Progress

Fix issues

Use of TLI’s

PerformanceChaosFunctional 
Automation Security



Evaluating the data

SRE

Monitoring & Observability 
metrics

Does it meet our 
TLO/SLO’s ?

Yes

No

Progress

Fix issues

Use of TLI’s

PerformanceChaosFunctional 
Automation Security



Doing the comparisons 



Bringing it all together
SRE +

Chaos, Performance, Test Automation, Security



Finding Balance
What’s the right combination of tools and at what point in the development chain 

will they return the most benefit 

- The right tool
- For the right domain
- At the right time
- Aligns to the teams maturity and skillset
- Operate open contribution model



● Measurement
○ Understanding your system, applications and their behaviour
○ Determining what ‘ideal’ state looks like

● Chaos
○ Viewed as experiments to help understand behaviour

● Security
○ Vulnerabilities can cause long lasting business and series commercial 

implications
● Performance

○ Is broad and covers all other testing areas and disciplines and its important to 
include component and E2E strategies

Automation
○ Finding the right balance of testing types can help increase communication, trust 

and in turn produce a better product

Re-Cap



Useful links
Some Reading:
Principles of chaos engineering : https://principlesofchaos.org/

Tooling:
SRE/DevOps performance : https://artillery.io/
Keptn - event based control plane for cloud native  : https://github.com/keptn/keptn
Chaos tool : Gremlin https://gremlin.com

Recent conferences
https://www.sloconf.com/
https://www.cloud-native-sre.wtf/

Contact
Web : https://scottgriffiths.me
Linkedin : https://www.linkedin.com/in/scgriffiths/

https://principlesofchaos.org/
https://artillery.io/
https://github.com/keptn/keptn
https://gremlin.com
https://www.sloconf.com/
https://www.cloud-native-sre.wtf/
https://scottgriffiths.me
https://www.linkedin.com/in/scgriffiths/

