
Continuous Automation
A holistic testing approach to determining reliability and

resilience

The question

Can we use various automated testing
approaches to understand how reliable and
resilient our applications and systems might
be?

The distributed system
● A 1000 ft view

Performance
● Shift left and moving right

Chaos
● Cultural change to when things fail

Automated checks
● Testing using real world examples

Security
● Surfacing potential vulnerabilities

Combining them all
● Tests that play well together stay together

Observability
● Knowing what’s going on at any point

Agenda

The Goal of CA

The unification of test tooling is to provide the most reward from the least
amount of effort in determining system reliability.

And that collectively provides useful information as to system state which
surfaces problems and that can lead to predicting potential future issues

The distributed system
Connecting the dots

Distributed system simplified

A group of machines that pass
information to each other in order to

achieve a common goal

Client server & P2P
● No guarantees regarding path
● Server location could be anywhere
● Latency can vary
● Transfer rates can depend on other user

Distributed system fallacies

The network is reliable;
Latency is zero;
Bandwidth is infinite;
The network is secure;
Topology doesn't change;

The Dream!

Down on the farm...

The Thundering herd problem

The problem happens when a large number of processes or threads waiting for an event
are awoken when that event occurs, but only one process is able to handle the event.

When (4) worlds collide
Chaos, Performance, Test Automation,

Security

Performance Engineering
Planning and building the application

with performance in mind

Traditional Performance testing

Design /
Planning Dev Test Deploy Operate Support

- Very waterfall orientated
- Testing late in the cycle leads to a larger feedback loop and in

turn increasing cost, resources, energy and delivery time

E2E
Performance

- Workload
Modeling

- Performance
Modeling

- Performance
Execution/Observatio
n

Metrics

Performance Engineering
Shift Left

Development Deploy Operate Support

Performance as a component
of feature development

● Moving part of the performance
testing process into the
development phase

Test

Performance Observability Metrics

Design/Plan Deploy

Performance Engineering
Move Right

Design / Plan Development Test

Performance
Observability Metrics

● Using production data to verify
performance assumptions

● Using reported and collected
user data in conjunction with
operational metrics to drive
development priorities

User Data

Deploy Operate Support

● Understand performance early
● Isolated testing
● Enhanced Traceability
● Reduced fix time
● Transparency

Performance Benefits

Chaos Engineering(CE)
Chaos Engineering is the discipline of experimenting on a

system in order to build confidence in the system’s
capability to withstand turbulent conditions in production

Chaos is about building a culture of resilience in
the presence of unexpected system outcomes

It’s all about understanding the end user
experience and understanding how we are

building tolerant systems

Chaos Engineering is NOT…
About breaking the system

Chaos is about experimentation

➔ Start By Defining the Baseline (Steady-State)

➔ Hypothesize the Steady-State Will Endure

➔ Introduce Variables/Experiments

➔ Try to Disprove the Hypothesis

The Approach

The Pillars

➔ Adequate coverage

➔ Run often and in Prod (or similar)

➔ Minimising the blast radius

● Exposing system weaknesses
● Determining application/environment behaviour

under varying conditions
● Cultural shift to what happens when things fail
● Improves how infrastructure is built
● Builds internal trust and empathy

Chaos Benefits

Automation
Testing & Verifying Resilience

Automation in context
We are looking to confirm a question we

expect we know the answer to

The comparison

We take inputs and produce outputs
we then compare them to what’s
expected in the way of assertions

Performance spans all boundaries as
each approach can and should have
a performance consideration

● Confirming expectations
● Understanding logical flow
● Enhanced communication and socialisation
● Fast feedback cycles
● Reduced double handling
● Repeatability

Automation Benefits

Security
Are we safe

Vulnerability testing
SAST

● Inside out approach
● Can be run early on(feature

branches)
● Cheaper to fix
● Can be run against all code

bases (app, services, apis)
● Easily automatable

DAST
● Outside in approach
● Used later on in the SDLC
● Only used for web app and

services
● Uses fault injection

techniques

IAST
● Scalable
● Reduced false positives

● Improved reliability / predictability
● Reduced chance of error
● Unbiased feedback
● Lowered costs

Security Benefits

Test Automation and SRE
A common agile approach to determining and measuring

state

Measurements using SRE

DevOps

Reliability
Engineering

Performance

Chaos (CE)

● Define the problem space (SLO/SLI/SLA’s)

● Abide to DevOps principles

● Consume and act on observability metrics

● Build a hypothesis and validate using implicit metrics

● Use of Performance component based models

● Actions/triggers based around observability data

● Use simple but measurable security scans

Engineering Effectiveness & Efficiency

Functional
Automation

Security

Observability
Testing/Automation

Observability
Understanding the system

state and behaviour

Understanding test state
We use tests to verify load expectations, look for

vulnerabilities, induce erratic behaviour and
confirm the understood.

We need a way to make sure that the results that
are generated have a level of accountability

Collecting the data
Reliability

Engineering (RE)

PerformanceChaosFunctional
Automation

The understood The Experimental Does it measure up

Monitoring & Observability
metrics

Does it meet our
TLO/SLO’s ?

Yes

No

Progress

Security

Are we vulnerable

Fix issues

Use of TLI’s

Doing the comparisons

Bringing it all together
Chaos, Performance, Test Automation,

Security

Finding Balance
What’s the right combination of tools and at what point in the development chain

will they return the most benefit

- The right tool
- For the right domain
- At the right time
- Aligns to the teams maturity
- Open source contribution models

Example
approach

● Aim for good distribution of
various tests at each pivotal point

● Use the faster running tests early
on

● Provide coverage appropriate to
your domain

● Measure and expose all tests in
a common/unified dashboarding
solution

Getting traction - Lean Canvas
What are we trying to solve / Enable?

Problem
● We only deploy once a month

Solution
● Include automation mechanisms to build trust and

confidence within the team and we can release faster

Who is the audience
Customer / Users

● Team / Business
stakeholders

How is it done now
Current state

● Manual tests
● Writing the

automation tests in
BDD format

The approach
Process

● Build and share this lean canvas

UI
● Dev / Sit / UAT automation
● CI/CD integration (Cloud)

API assessment & implementation
● Evaluate API automation in use

and present implementation
options

Chaos
● Look at 1 small chaos experiment

Performance
● The ability for the developers to

run these locally

Additional
● Look into container vulnerability

and SAST scans

Why are we doing this
Benefit / Outcome

● Alignment to
enterprise
QE/automation
processes

● Reducing manual
testing effort

Objective / Deliverables
Metrics

● Standardised
automation

Questions / Assumptions / Risks
Problem / Opportunity

● Uplifting the automation coverage percentage is
critical

Risk
● The performance of the application
● Lack of resources

The distributed system
● A 1000ft view

Performance
● Shift left and moving right

Chaos
● Cultural change to when things fail

Automated checks
● Testing using real world examples

Security
● Surfacing potential vulnerabilities

Combining them all
● Tests that play well together stay together

Observability
● Knowing what’s going on at any point

Re-Cap

Useful links
Nicholas Taleb’s : The Black Swan: The Impact of the Highly Improbable
Principles of chaos engineering : https://principlesofchaos.org/
Let a 1000 flowers bloom : measuring engineering effectiveness

Contact
Web : https://scott.griffiths.me
Linkedin : https://www.linkedin.com/in/scgriffiths/
Twitter : https://twitter.com/__ScottyG_

https://en.wikipedia.org/wiki/The_Black_Swan:_The_Impact_of_the_Highly_Improbable
https://principlesofchaos.org/
http://www.gigamonkeys.com/flowers/
https://scott.griffiths.me
https://www.linkedin.com/in/scgriffiths/
https://twitter.com/__ScottyG_

