Continuous Automation




The question

Can we use various automated testing
approaches to understand how reliable and

resilient our applications and systems might
be??



Agenda

Performance
e Shift left and moving right

Chaos
e Cultural change to when things fail

Automated checks
e Testing using real world examples

Security
e Surfacing potential vulnerabilities




The Goal of CA

The unification of test tooling is to provide the most reward from the least
amount of effort in determining system reliability.

And that collectively provides useful information as to system state which
surfaces problems and that can lead to predicting potential future issues



The distributed system

Clients —

eeeeee



Distributed system simplified

A group of machines that pass
Information to each other in order to
achleve a common goal



Client server & P2P

No guarantees regarding path

Server location could be anywhere
Latency can vary

Transfer rates can depend on other user

eeeee

P2P network



The Dream!

The network is reliable;
Latency is zero;
Bandwidth is infinite;
The network is secure;

Topology doesn't change;

Distributed system fallacies

X



Down on the farm...

The Thundering herd problem



Chaos, Performance, Test Automation,
Security




Performmanee Engineering

Planning and building the application
with performance in mind



Traditional Performance testing

- Very waterfall orientated
- Testing late in the cycle leads to a larger feedback loop and in
turn increasing cost, resources, energy and delivery time

Design /

- Workload - Performance - Performance
Modeling Modeling Execution/Observatio
n

> Metrics




Performance Engineering
Shift Left

Performance as a component
of feature development




Performance Engineering
Move Right




PDerformance Benefits

Understand performance early
|solated testing
Enhanced Traceability

Reduced fix time
Transparency




Chaos Engineering(CE)



Chaos Engineering is NOT..

About breaking the system



Chaos Is about experimentation

The Pillars



Chaos Benefits

Exposing system weaknesses

Determining application/environment behaviour
under varying conditions

Cultural shift to what happens when things fail
Improves how infrastructure is built

Builds internal trust and empathy



Automation




Automation in context




The comparison

Unit Test Dutpen

’“ I

Integration Test

| [Component .| |Component
A B

API Test

L]

[N
(Ul Test]

€ I Browser
it Proxy

.| |[Component] | .| [Component
A B




Automation Benefits

Confirming expectations

Understanding logical flow

Enhanced communication and socialisation
Fast feedback cycles

Reduced double handling

Repeatability



B
¥
v r‘T‘JF




Vulherability testing

IAST

e Scalable
e Reduced false positives




Security Benefits




Test Automation and SRE




Measurements using SRE

b Reliability
Engineering

i

Performance

Chaos (CE)

Observability
Testing/Automation

Security

)
—




Observability




Understanding test state

We use tests to verify load expectations, look for
vulnerabilities, induce erratic behaviour and
confirm the understood.

We need a way to make sure that the results that
are generated have a level of accountability



Collecting the data

Reliability

Engineering (RE)

Functlor)al Chaos Performance Security
Automation
The Experimental Does it measure up Are we vulnerable

The understood

Does it meet our

TLO/SLOs ?




Doing the comparisons

e { Global Metric
. aggregatlon

J—[ Dashboarding }—[

Environment

Component
Application
User feedback

[ Component ] [ Integrated

] [ Environment ]

[ Design / Plan ] [ Development J [ Test

] [ Deploy ] [ Operate

S

| Deltas

Define the internal
expectations (SLO’s)
Have these enforced by SLI's



Chaos, Performance, Test Automation,
Security

-
=
¥
-
L
B
2
— -
A
=
:
3




Finding Balance

What's the right combination of tools and at what point in the development chain
will they return the most benefit

-  The right tool @

- For the right domain e
- At theright time

- Aligns to the teams maturity

- Open source contribution models

Performance




-xample
approach

Container Scans

|| securty |

(| unr ||

| [ integration | |
Cl

Local Source Code

Ct

T _onr ] | Performancel |
|| Integration | | T Chaoe || LL_Ghoce ||

| Perarmance | [ oast | [Portoma]




Getting traction - Lean Canvas



Re-Cap

Performance
e Shift left and moving right

Chaos
e Cultural change to when things fail

Automated checks
e Testing using real world examples

Security
e Surfacing potential vulnerabilities




Useful links

The Impact of the Highly Improbable
https://principlesofchaos.org/
measuring engineering effectiveness

Contact

https://scott.griffiths.me
https://www.linkedin.com/in/scqriffiths/
https://twitter.com/__ScottyG



https://en.wikipedia.org/wiki/The_Black_Swan:_The_Impact_of_the_Highly_Improbable
https://principlesofchaos.org/
http://www.gigamonkeys.com/flowers/
https://scott.griffiths.me
https://www.linkedin.com/in/scgriffiths/
https://twitter.com/__ScottyG_

